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Quantum computation using weak nonlinearities: Robustness against decoherence
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We investigate decoherence effects in the recently suggested quantum-computation scheme using weak
nonlinearities, strong probe coherent fields, detection, and feedforward methods. It is shown that in the weak-
nonlinearity-based quantum gates, decoherence in nonlinear media can be made arbitrarily small simply by
using arbitrarily strong probe fields, if photon-number-resolving detection is used. On the contrary, we find that
homodyne detection with feedforward is not appropriate for this scheme because in this case decoherence
rapidly increases as the probe field gets larger.
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I. INTRODUCTION

Decoherence �1� is one of the main obstacles to the ob-
servation of quantum phenomena and the realization of
quantum-information processing �QIP�. Since it is impos-
sible to perfectly isolate a quantum system from its environ-
ment, decoherence effects are more or less unavoidable.
Long-term existence of a macroscopic quantum superposi-
tion �2� is hindered by the decoherence effects �1,3�. Over-
coming the destructive effects of decoherence is the central
issue for the realization of large-scale quantum computation
�QC�. Quantum error-correcting codes and entanglement pu-
rification protocols have been developed to overcome the
destructive effects of decoherence �4�.

Strong nonlinear effects in optical systems, on the other
hand, could be very useful for the observation of quantum
phenomena �5–7� and the implementation of optical QIP �8�.
Since currently available nonlinearities are extremely weak,
optical fields need to pass through long nonlinear media for
observable realizations of quantum effects. This causes the
decoherence effects to be overwhelming so that no quantum
effects are actually manifest.

Recently, the idea of using weak cross-Kerr nonlinearities
combined with strong coherent fields has been developed by
several different authors and applied in various ways �9–19�.
The general idea of the weak-nonlinearity-based approach is
that the weak strength of a nonlinearity can be compensated
by using a strong probe coherent field ��� with a very large
amplitude �. In particular, Nemoto and Munro suggested a
QC scheme using weak nonlinearities and linear optics �14�,
which has been further developed by Munro et al. �15,16�.
They also pointed out �17� that the weak-nonlinearity-based
QC �14–16� has merit over the linear optics QC based on
Knill et al.’s proposal �20� for large-scale quantum compu-
tation. However, a rigorous investigation of decoherence ef-
fects is essential to verify the validity of the weak-
nonlinearity-based QC in a real experiment.

Very recently, it was shown �11� that a generation scheme
for macroscopic-superposition states �21� combined with the
weak-nonlinearity-based approach �9–14� can per se over-
come decoherence in a nonlinear medium, i.e., as the ampli-
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tude � becomes large, decoherence during the nonlinear in-
teraction decreases. In the concluding remarks of Ref. �11�, it
was naively conjectured that the QC scheme �14–17� could
also overcome the decoherence effects in the same way.
However, it is unclear whether the weak-nonlinearity-based
QC can truly overcome decoherence during the nonlinear
interactions in this way with different detection-feedforward
strategies �14–17�.

In this paper, we investigate decoherence effects in weak-
nonlinearity-based QC with homodyne detection �14,15,17�
and photon-number-resolving detection �16�. We show that
as the initial amplitude of the probe coherent state gets
larger, decoherence rapidly increases in a two-qubit parity
gate with homodyne detection �13–15,17�. On the contrary,
we find that as the initial amplitude of the probe coherent
state gets larger, decoherence diminishes in a two-qubit par-
ity gate with photon-number-resolving detection �16�. In
other words, decoherence can be made arbitrarily small in
this type of gate simply by increasing the probe field ampli-
tude. We explain that this is due to the difference of the
geometric requirements in the phase space. Since the two-
qubit parity gate is the key element in weak-nonlinearity-
based QC �14–17�, our result shows that weak-nonlinearity-
based QC can naturally overcome decoherence effects but
photon-number-resolving detection is needed for such ro-
bustness to decoherence.

II. THE TWO-QUBIT PARITY GATE
USING WEAK NONLINEARITIES

It was shown that in conjunction with a strong coherent
field, two weak nonlinearities are sufficient to implement a
parity gate that entangles two qubits as illustrated in Fig. 1

FIG. 1. A schematic of the parity gate using weak nonlinearities
that entangles two qubits. The two-mode nonlinear interactions �

and −� occur only for the horizontally polarized qubit state �H�.
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�13,14�. The interaction Hamiltonian of the cross-Kerr non-
linearity between modes a and p is HK= ��âa

†âaâp
†âp, where

â �â†� represents the annihilation �creation� operator and � is
the nonlinear coupling constant. The interaction between a
Fock state �n�a and a probe coherent state ���p is described as
UK�t� �n�a ���p= �n�a ��ein��p, where �=�t with the interaction
time t, and UK�t�=eiHK t/�. Using polarization beam splitters,
it is possible to use the horizontally and vertically polarized
single-photon states �H� and �V� to work as �14�
UK�t� �H� ���= �H� ��ei�� and UK�t� �V� ���= �V� ���. For sim-
plicity, we assume two identical initial qubits ���a= ��H�a

+ �V�a� /�2 and ���b= ��H�b+ �V�b� /�2. The total initial state
is

��i� =
1

2
��H� + �V��a��H� + �V��b���p �1�

where � is assumed to be real without losing generality. Af-
ter the first nonlinear interaction between modes a and p
with angle �, the initial state evolves to ��1�= ���HH�
+ �HV��ab ��ei��p+ ��VH�+ �VV��ab ���p	 /2. After the second
nonlinear interaction between modes b and p with angle −�,
it becomes

��2� =
1

2
���HH� + �VV��ab���p + �HV�ab��ei��p

+ �VH�ab��e−i��p	 . �2�

A measurement is then performed to distinguish the probe
beam ���p from ��ei��p and ��e−i��p, while it does not distin-
guish ��ei��p and ��e−i��p.

Suppose that homodyne detection for quadrature X̂= �a
+a†� /2 is performed with the measurement result X. As can
be seen in Fig. 2�a�, the distinguishability of the measure-
ment is determined by the distance

dHD = ��1 − cos �� 

��2

2
�3�

where the approximation has been made under the assump-
tions of ��1. Munro et al. pointed out that the error prob-
ability is Perr
10−4 for dHD=4 �15�. If dHD is large enough
and the measurement outcome is X�Xmid, where Xmid=��1
+cos �� /2, the output state is

�� f� =
1
�2

��HH� + �VV��ab. �4�

On the other hand, if X�Xmid, the output state is �� f��
= �ei	�X� �HV�+e−i	�X� �VH��ab /�2, where 	�X�=2� sin ��X
−� cos ��. One can transform the state �� f�� to the state �� f�
by a simple phase shift for mode b �14,15� based upon the
measurement result.

Instead of homodyne detection, photon-number-resolving
detection can be used to distinguish the coherent-state ele-
ments for mode p as shown in Fig. 2�b� �16�. The displace-
ment operation D�−�� is then applied before photon-number
detection is performed. After the displacement operation, the
state �0� can be distinguished from ���e±�−1�� by photon-

number-resolving detection with measurement np. The out-
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put state �4� is obtained for np=0. The resulting state for
np�0, �ei	�np� �HV�+e−i	�np� �VH��ab /�2, can be transformed
to the state �4� by a phase shift with the phase factor 	�np�
=nptan−1�cot�� /2��. The distance dPD which determines the
distinguishability of the measurement is

dPD = 2� sin
�

2

 �� �5�

and the error probability is Perr
10−4 for dPD=
 �16�.

III. DECOHERENCE IN THE WEAK-
NONLINEARITY-BASED PARITY GATE

The ideal output state of the two-qubit parity gate should
be the pure entangled state �4�. However, the actual outcome
state will be a mixed state due to the decoherence effects in
the nonlinear media. Photon losses may occur both in the
probe field mode �p� and in the qubit modes �a and b�. How-
ever, the possibility of losing photons in the qubit modes
becomes lower as the initial amplitude gets larger, because
the interaction times �t=� /�� in the nonlinear media become
shorter as can be shown from Eqs. �3� and �5�. The important
factor of decoherence in the two-qubit output state �4� is
photon losses in the probe field mode. Since the coherent

FIG. 2. �Color online� Geometric diagram for the weak-
nonlinearity-based two-qubit parity gate using �a� homodyne and
�b� photon-number-resolving detection. �a� As the initial amplitude
becomes large, the “travel path” �� of the coherent state in the
phase space should increase to maintain the distance dHD, i.e.,
�2�2��1�1. This causes increase of decoherence effects for large
amplitudes. �b� Regardless of the initial amplitude, the travel path
�� of the coherent state of the same order can maintain the distance
dPD, i.e., �2�2
�1�1. This reduces the decoherence effects because
the interaction time t in a nonlinear medium becomes shorter as the
initial amplitude increases.
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field contains a large number of photons, it is easy to lose
photons even in a very short time. Such photon losses in the
probe coherent field cause the loss of phase information in
the two-qubit output state �4�. In particular, it is known that a
superposition of two distant coherent states rapidly loses its
coherence even when it loses a small number of photons �3�.
Therefore, photon losses of the probe coherent field in the
nonlinear media should be considered the main source of
decoherence in the two-qubit output state. In what follows,
we shall consider photon losses in the probe field and deco-
herence effects in the two-qubit output state caused by such
photon losses.

Suppose that the probe coherent field loses photons in the
first nonlinear medium as ���→ �A��, where we define the
amplitude parameter A ��1�. After the first nonlinear inter-
action, the total initial state becomes a mixed state:

1

4
���HH� + �HV����HH� + �HV�� � �A�ei���A�ei��

+ C��HH� + �HV����VH� + �VV�� � �A�ei���A��

+ C*��VH� + �VV����HH� + �HV�� � �A���A�ei��

+ ��VH� + �VV����VH� + �VV�� � �A���A��	abp �6�

where the coherent parameter C is introduced to quantify the
degree of dephasing. It is easy to recognize that both A and
C should be reasonably large for the two-qubit parity gate
to work properly at the end. If A is large but C is negli-
gible, the final output state of the parity gate will be � f

�m�

= ��HH��HH � + �VV��VV � �ab /2, which was also pointed out in
Ref. �16�. This completely dephased state � f

�m� does not con-
tain entanglement, i.e., the two-qubit parity gate completely
fails. On the other hand, if C is close to 1 but A is negligible,
the final result will be �	 f�= ��H�+ �V��a��H�+ �V��b /2, which
is simply identical to the unentangled initial qubits, so that
the gate also fails.

The decoherence effects for a state described by the den-
sity operator � can be induced by solving the master equation
�22�

��

�t
= Ĵ� + L̂�, Ĵ� = 
a�a†, L̂� = −




2
�a†a� + �a†a� ,

�7�

where 
 is the energy decay rate. The formal solution of the

master equation �7� can be written as ��t�=exp��Ĵ+ L̂�t���0�
where t is the interaction time. The evolution of the initial

density element ������ by the decoherence process D̃ can be
described as �22�

D̃�������� = e−�1−e−
t���1/2�����2+���2�−��*	�A���A�� , �8�

where ��� ����� is a coherent state with amplitude � ��� and
A=e−
t/2. However, it should be noted that the decoherence

process �D̃� occurs simultaneously with the unitary evolution

�Ũ� by the cross-Kerr interaction Hamiltonian HK in a non-
linear medium. This combined process can be modeled as

˜
follows �11�. One may assume that U occurs for a short time
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�t, and then D̃ occurs for another �t. In other words, Ũ and

D̃ continuously take turns for such short intervals in the non-
linear medium. By taking �t arbitrarily small, one can obtain
an extremely good approximation of this process for a given
time t �=N�t� with large integer number N. Let us set ��
=��t=
 /N. In our calculation, we have chosen N=106, i.e.,
��=
 /106. This value gives a very good approximation for
the whole range of � in our study �11�. Using this model, let
us first consider the evolution of one cross term ��HH�
��VH � �ab � ������ � �p in the initial state �1�. After time t
�=N�t� in the nonlinear medium, it evolves to

�D̃p��t�Ũap��t�	N��HH��VH��ab � ��������p

= C��HH��VH��ab � ��A�ei���A���p �9�

where Ũ��t���UK��t��UK
† ��t� and

C = exp
− �2�1 − e−
�t/N���
n=1

N

exp�− 
�t/N���n−1�

��1 − exp�− i�n�t/N��	� . �10�

The amplitude parameter A and the coherence parameter C
can then be obtained for an initial amplitude �. We shall use
the absolute value of the coherence parameter �C� to assess
the degree of dephasing.

We are interested in A and �C� under experimentally real-
istic assumptions. It is known that an optical fiber of about
3000 km may be required for a nonlinear interaction of �
=
 using a currently available cross-Kerr nonlinearity �23�.
We first choose � /
=0.0125 so that the amplitude will re-
duce as A
0.533 for 15 km while �=
 is obtained for
3000 km. This corresponds to 0.364 dB/km of signal loss,
which is a typical value for commercial fibers used for tele-
communication and easily achieved using current technology
�24,25�. Note that signal losses in some pure silica core fi-
bers are even less than 0.15 dB/km �25�. Figure 3�a� shows
that as the initial amplitude � increases for a fixed dHD
�=4�, the absolute coherence parameter �C� �dashed line� rap-
idly decreases for the homodyne detection scheme. The ab-
solute coherence parameter �C� is not negligible only when �
is small. However, the two-qubit parity gate does not work in
this regime because A �solid line� becomes extremely small.
This means the probe coherent state becomes the pure
vacuum so that a large �C� is meaningless. Figure 3�b� shows
that this scheme with photon-number detection does not suf-
fer such problems: as the initial amplitude � increases for a
fixed dPD �=
�, both A and �C� increase for large �. Some
detailed values for � /
=0.0125 �0.364 dB/km� and � /

=0.0303 �0.15 dB/km� including the required length of op-
tical fibers are presented in Table I.

One can understand the difference between Figs. 3�a� and
3�b� by a simple geometric analysis in Fig. 2. For the case of
homodyne detection, as the initial amplitude � gets larger,
the “travel path” of the coherent state in the phase space, ��,
increases. �Even though � decreases, the increase of � makes

2
�� larger for a fixed dHD �
�� /2� as shown in Fig. 2�a�.�
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Therefore, the initial coherent state should travel longer in
the phase space. This makes decoherence actually increase as
� gets larger. In this case, the principle of increasing � to
compensate small � will not work efficiently. However, the
mechanism is totally different when photon-number-
resolving detection is used. As the initial amplitude � gets
larger, the travel path �� does not increase for a fixed
dPD �
��� but remains approximately the same �see Fig.
2�b��. Therefore, the coherent state travels the same distance
regardless of �, while the interaction time t �=� /��, depend-
ing on �, keeps decreasing as � increases. Such decrease of
the interaction time t for the same distance causes the de-
crease of decoherence.

So far, we have considered optical fibers, in which the
energy decay rate 
 is typically much larger than the nonlin-
ear strength � as shown in Table I. Munro et al. discussed
quantum nondemolition �QND� measurements using giant
cross-Kerr nonlinearities available in electromagnetically in-
duced transparency �EIT� �12�. This technique can be used to
avoid the problems of highly absorptive media. Using this
technique, weak-nonlinearity-based QC can be performed in
the regime of 
t
�t �=���1. This change will certainly
improve A and �C� for a given value of � �or a given value of

FIG. 3. The amplitude parameter A �solid line� and the absolute
coherence parameter �C� �dashed line� against the initial amplitude �
for homodyne and photon-number detection. The two-qubit parity
gate works when both A and �C� are large. �a� When homodyne
detection is used, it is obvious that the condition of both A and �C�
being large cannot be met. �b� When photon-number-resolving de-
tection is used, the condition is satisfied for large �.
�� in the case of photon-number-resolving detection. For ex-
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ample, if �=0.01 and 
=0.01, A
0.995 and �C � 
0.982 are
obtained for �
0.0105 �i.e., �=300�. However, the realiza-
tion of weak-nonlinearity-based QC using homodyne detec-
tion will still be extremely hard. We set �=0.01 and consider
the following two examples in Fig. 4. In the first example,
�=103 where the required angle is �
0.13, and in the sec-
ond, �=104 and �
0.04. Figure 4 clearly shows that the
energy decay rate 
 should be extremely small in the case of
homodyne detection, which is not realistic using current
technology.

TABLE I. The amplitude parameter A and coherence parameter
�C� under various conditions. � is the initial amplitude of the probe
coherent state and “Length” is the required length of the optical
fiber. �a� Cases for homodyne detection with dHD �
��2 /2�=4.
Comparing A and �C�, it is obvious that this detection strategy can-
not be used for a weak-nonlinearity-based two-qubit parity gate. �b�
Cases for photon-number-resolving detection with dPD �
���=
.
Both A and �C� approach 1 simultaneously when � becomes large.

� /
 � �=�t� � Length �km� A �C�

�a� Homodyne detection

0.0125 0.284 100 271 10−5 0.210

0.163 300 130 0.0014 �0

0.052 3000 50 0.127 �0

0.0303 0.284 100 271 0.009 10−4

0.163 300 130 0.067 �0

0.052 3000 50 0.427 �0

�b� Photon number resolving detection

0.0125 0.0105 300 10 0.658 0.474

1.05�10−3 3000 1 0.959 0.878

1.05�10−4 3�104 0.1 0.996 0.985

0.0303 0.0105 300 10 0.841 0.644

1.05�10−3 3000 1 0.983 0.946

1.05�10−4 3�104 0.1 0.998 �0.99

FIG. 4. The absolute coherence parameter �C� against the energy
decay rate 
. The nonlinear strength is assumed to be �=0.01. Note
that the amplitude parameter A will be always close to 1 in this
regime since 
t is very small. The solid line corresponds to �
=103 so that �HD=�t
0.13. The dashed line corresponds to �
=104 and �HD=�t
0.04. The coherence parameter �C� rapidly de-

creases for a small increase of 
.
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IV. DISCUSSION

In the weak-nonlinearity-based QC scheme, a strong
probe coherent field with a large amplitude is necessarily
required. However, as the amplitude of the coherent field
gets larger, decoherence during nonlinear interaction rapidly
increases when homodyne detection is used. On the contrary,
decoherence diminishes under the same conditions when
photon-number-resolving measurement is used. This shows
that weak-nonlinearity-based QC can naturally overcome de-
coherence during nonlinear interactions simply by using
strong probe fields, when photon-number-resolving detection
is used.

Since dPD=
 in Eq. �5� is required for a small error prob-
ability, the photodetector for the two-qubit gate should be
able to discriminate about ten �
dPD

2 � photons. Such detec-
tion ability is extremely demanding using current technology.
It may be crucial to first develop the photon-number-
resolving QND technique using a weak nonlinearity, a strong
coherent field, and homodyne detection in Ref. �12�, which
was employed for the two-qubit gate in Ref. �16�. Here, we
point out that the QND technique in Ref. �12� does not suffer
the increase of decoherence for large probe field amplitudes
in the nonlinear medium because distinguishability of this
QND scheme �12� depends on 
��, not on 
��2.

Using photon-number-resolving detection in the weak-
nonlinearity-based two-qubit parity gate also requires a
highly precise displacement operation D�−��, with a very
large �. The displacement operation can be performed using
a strong coherent field and a beam splitter with high trans-
mittivity. It would be experimentally challenging since the
average photon number of the probe coherent field should be
�A2��2�106 to obtain good coherence as can be seen in
Table I�b�.

The two-qubit parity gate that we have considered in this
paper is based on two weak nonlinearities, a probe coherent
field, a probe beam measurement, and classical feedforward
as shown in Fig. 1 �14–17�. Here, we note the recently sug-
gested weak-nonlinearity-based controlled-phase gate by
Spiller et al. �26�, where the probe beam measurement is not
necessary, at the cost of using additional nonlinearities and

displacement operations. The requirement of successful

�8� G. J. Milburn, Phys. Rev. Lett. 62, 2124 �1989�.
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achievement of this gate is ���1 �26,27�, which satisfies
the condition for robustness against decoherence analyzed in
this paper. Therefore, such an approach without the probe
beam measurement may be considered as an alternative to
the weak-nonlinearity-based parity gate in Fig. 1 using
photon-number-resolving detection.

We have explained the reason for the decrease of deco-
herence when photon-number-resolving detection is used.
Qualitatively, decoherence depends on the interaction time t
and the travel path �� of the component coherent state in
Fig. 2. In other words, one can expect that decoherence ef-
fects will increase when either t or �� becomes large. As the
initial amplitude � of the probe beam increases, the interac-
tion time t is reduced while �� remains approximately the
same when photon-number-resolving detection is used,
which causes a decrease of the decoherence effects. This is
not the case for homodyne detection: in the case of homo-
dyne detection, �� should become larger as � increases,
which results in an increase of the decoherence effects.

We finally point out that certain types of errors cannot be
made small in the way explained above. For example, in a
real experiment, self-phase modulation �SPM� will also oc-
cur during the cross-Kerr interactions in optical fibers �28�. It
may hinder measuring the phase shift purely induced by the
cross-Kerr effects in weak-nonlinearity-based QC. Note that
the principle of the weak-nonlinearity-based approach is to
use a large-amplitude probe beam to compensate the weak
strength of the nonlinearity. This mechanism is applied to
both the cross-Kerr effects and the SPM effects �18�. There-
fore, the ratio between the cross-Kerr effect and the SPM
effect during the interaction between the probe beam and the
single-photon qubit in the nonlinear medium will not be af-
fected by the detection strategy or the initial amplitude. This
kind of error should be separately dealt with �for example,
see Ref. �29��.
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